积分方程需要转化为微分方程来求解。
两边需对t求导,需要先把那个积分整理一下.
∫[0→t] y(t-u)e^u du
令t-u=x,则,du=-dx,x:t→0
=∫[t→0] y(x)e^(t-x) d(-x)
=∫[0→t] y(x)e^(t-x) dx
=e^t∫[0→t] y(x)e^(-x) dx
这样积分方程化为:
y(t)+e^t∫[0→t] y(x)e^(-x) dx=2t-3 (1)
两边除以e^t得:
y(t)e^(-t) + ∫[0→t] y(x)e^(-x) dx = (2t-3)e^(-t)
两边对t求导得:
y'(t)e^(-t) - y(t)e^(-t) + y(t)e^(-t) = 2e^(-t) - (2t-3)e^(-t)
即:y'(t)=2-(2t-3)
这样我们得到一个微分方程
将t=0代入(1)得:y(0)=-3,这是初始条件,这样一个积分方程就化为微分方程初值问题了.
顶一下
(0)
0%
踩一下
(0)
0%
- 相关评论
- 我要评论
-