返回首页

矩阵求法向量公式怎么来的?

240 2024-01-26 19:40 admin

1、建立恰当的直角坐标系;

2、设平面法向量n=(x,y,z);

3、在平面内找出两个不共线的向量,记为a=(a1,a2, a3) b=(b1,b2,b3);

4、根据法向量的定义建立方程组①n·a=0 ②n·b=0;

5、解方程组,取其中一组解即可。

关于法向量微分几何的计算方式,这涉及到曲面的表示方式。通常曲面的表示方式为:

(1)隐函数:F(x,y,z)=0, 如平面x+y+z=0;

(2)(参数化的)向量形式:r(u,v)=x(u,v)i+y(u,v)j+z(u,v)k. 因为曲面的维度为2,所以一般是两个参数u,v。比如:x+y+z=0 可表示为:r(u,v)=ui+vj+(-u-v)k.

对应的,计算法向量的方式分别为:

(1)grad(F). 即隐函数F(x,y,z)的梯度grad(F) 即为曲面在点(x,y,z)处的法向量,也即,法向量为F(x,y,z)=C变化率最大的方向。

顶一下
(0)
0%
踩一下
(0)
0%
相关评论
我要评论
用户名: 验证码:点击我更换图片

网站地图 (共14个专题52460篇文章)

返回首页