返回首页

网络拓扑系统名词解释?

110 2023-11-24 07:46 admin

一、网络拓扑系统名词解释?

网络拓扑(Network Topology)系统是指用传输介质互连各种设备的物理布局。指构成网络的成员间特定的物理的即真实的、或者逻辑的即虚拟的排列方式。

如果两个网络的连接结构相同我们就说它们的网络拓扑相同,尽管它们各自内部的物理接线、节点间距离可能会有不同。

二、域名系统采用什么拓扑结构?

域名系统采用层次结构基于“域”的命令方案,每一层由一个子域名组成,子域名间用“.”分隔,其格式为:机器名,网络名,机构名,最高域名。

三、常见的网络拓扑结构有________A、总线拓扑B、星形拓扑C、环形拓扑D、网络拓扑E、树形拓扑?

主要有星型结构、环型结构、总线结构、分布式结构、树型结构、网状结构、蜂窝状结构等。

四、光伏系统拓扑图怎么画?

安防图集里面有图例,用CAD来绘制就可以了。

但是要充分考虑我们在写方案是常说的那些经典语录:先进性、稳定性、合理性、可扩展性、冗余性等等这些。呵呵

五、系统架构和网络拓扑图区别?

系统架和网络构拓扑图都是为了帮助人们理解和描述计算机系统的结构和组成部分,他们的区别在于,系统架构通常指的是整个系统的设计和组成部分,是一个更高层次的视角。它关注的是系统的模块、组件、功能和交互之间的关系,需要考虑诸如性能、可靠性、安全性等方面。比如,软件系统的架构描述可以包括模块间的接口、组件的职责和交互方式等。硬件系统的架构描述可以包括各个组件之间的连接方式、数据流的传输方式等。其中,架构图常常使用UML、流程图、流程图等来表示和描述。

而网络拓扑图则更注重于描述计算机网络的物理结构和连接方式。它展示了网络中多个设备之间的连接方式、路由、传输协议等信息。比如,在局域网中可以使用树形、环形、星形等不同的拓扑结构。在广域网中可以使用星形、网状、总线形等不同的拓扑结构。拓扑图一般采用图形化的方式来展示,如网络拓扑图、组网拓扑图等。 

综上所述,虽然系统架构和网络拓扑图都描述了计算机系统的结构和组成部分,但其关注的角度和描述方式不同,适用于不同的应用场景。

六、请问学习拓扑学(点集拓扑、代数拓扑、微分拓扑)要什么基础?

首先,如果你想做数理经济学或者金融工程研究,那么点集拓扑对于你理解数学分析及以后的高层次数学(如在前沿的高级宏观经济学研究中非常重要的泛函分析、金融工程中的随机微分方程理论)是大有裨益、甚至是必不可少的,因而点集拓扑学的功底是判断一个人数学素养的关键。点集拓扑都不知道的话,现代数学你会寸步难行。

在点集拓扑和实分析的基础上,可以学习初步的抽象动力系统,这个在一般均衡理论的研究中有用。

在点集拓扑和抽象代数的基础上,可以学习代数拓扑,在经济学中的运用,参见布劳威尔不动点定理。

博弈论中闻名遐迩的Kakutani不动点定理,还有高级微观经济学中的最大值定理,都是集值分析的主要结果。集值分析的基础是点集拓扑学。

最后,逼格噌噌噌的微分拓扑,其Morse理论的应用(我没用过反正),具体的记得范里安的《微观经济分析》中有提到,但我没有深入研究,只是十分粗浅的知道morse理论讲的是什么。现代一般均衡理论研究用到了微分拓扑的Poincare-Hpof定理。这是我在博士期间阅读国内外数理经济学文献中出现的最高深的数学定理,其数学理论参见《从微分观点看拓扑》,经济学应用参见肯尼斯-阿罗的《数理经济学手册》。还有比如,著名的Mas-Colell的《微观经济理论》中一般均衡的讨论,就使用了

Brouwer度

理论和

微分拓扑的指数定理(index Theorem)

。可能国内读经济学的

几乎

没人会教这个。参见下图。

总之,拓扑学有没有用,还是取决于你的研究方向和方法。

其实现在啊,国外做经济学拓扑的,

不动点理论几乎已经被微分拓扑取代了

七、拓扑理论?

拓扑学(topology),是研究几何图形或空间在连续改变形状后还能保持不变的一些性质的学科。它只考虑物体间的位置关系而不考虑它们的形状和大小。在拓扑学里,重要的拓扑性质包括连通性与紧致性。

拓扑英文名是Topology,直译是“地志学”,最早指研究地形、地貌相类似的有关学科。拓扑学是由几何学与集合论里发展出来的学科,研究空间、维度与变换等概念。这些词汇的来源可追溯至哥特佛莱德·莱布尼茨,他在17世纪提出“位置的几何学”(geometria situs)和“位相分析”(analysis situs)的说法。莱昂哈德·欧拉的柯尼斯堡七桥问题与欧拉示性数被认为是该领域最初的定理。

拓扑学的一些内容早在十八世纪就出现了,后来在拓扑学的形成中占着重要的地位。

八、什么拓扑?

计算机网络的拓扑结构是引用拓扑学中研究与大小,形状无关的点,线关系的方法。把网络中的计算机和通信设备抽象为一个点,把传输介质抽象为一条线,由点和线组成的几何图形就是计算机网络的拓扑结构。网络的拓扑结构反映出网中个实体的结构关系,是建设计算机网络的第一步,是实现各种网络协议的基础,它对网络的性能,系统的可靠性与通信费用都有重大影响。 最基本的网络拓扑结构有:环形拓扑、星形拓扑、总线拓扑三个。

九、拓扑原理?

拓扑学(topology),是研究几何图形或空间在连续改变形状后还能保持不变的一些性质的学科。它只考虑物体间的位置关系而不考虑它们的形状和大小。在拓扑学里,重要的拓扑性质包括连通性与紧致性。

拓扑英文名是Topology,直译是“地志学”,最早指研究地形、地貌相类似的有关学科。拓扑学是由几何学与集合论里发展出来的学科,研究空间、维度与变换等概念。这些词汇的来源可追溯至哥特佛莱德·莱布尼茨,他在17世纪提出“位置的几何学”(geometria situs)和“位相分析”(analysis situs)的说法。莱昂哈德·欧拉的柯尼斯堡七桥问题与欧拉示性数被认为是该领域最初的定理

十、拓扑定理?

 拓扑定理是:几何图形在连续变形下,有些性质会保持不变。拓扑学研究几何图形或空间在连续改变形状后还能保持不变的一些性质,它只考虑物体间的位置关系而不考虑它们的形状和大小。

在拓扑学里,重要的拓扑性质包括连通性与紧致性。在拓扑学里不讨论两个图形全等的概念,但是讨论拓扑等价的概念。

顶一下
(0)
0%
踩一下
(0)
0%
相关评论
我要评论
用户名: 验证码:点击我更换图片

网站地图 (共14个专题10295篇文章)

返回首页